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Family-based association designs are popular, because they offer inherent control of population stratification based
on age, sex, ethnicity, and environmental exposure. However, the efficiency of these designs is hampered by current
analytic strategies that consider only offspring phenotypes. Here, we describe the incorporation of parental phe-
notypes and, specifically, the inclusion of parental genotype-phenotype correlation terms in association tests, pro-
viding a series of tests that effectively span an efficiency-robustness spectrum. The model is based on the between-
within-sibship association model presented in 1999 by Fulker and colleagues for quantitative traits and extended
here to nuclear families. By use of a liability-threshold-model approach, standard dichotomous and/or qualitative
disease phenotypes can be analyzed (and can include appropriate corrections for phenotypically ascertained samples),
which allows for the application of this model to analysis of the commonly used affected-proband trio design. We
show that the incorporation of parental phenotypes can considerably increase power, as compared with the standard
transmission/disequilibrium test and equivalent quantitative tests, while providing both significant protection against
stratification and a means of evaluating the contribution of stratification to positive results. This methodology
enables the extraction of more information from existing family-based collections that are currently being genotyped

and analyzed by use of standard approaches.

Introduction

In study designs using nuclear families, parental ge-
notypes are commonly used to construct tests of asso-
ciation that are entirely contained within the family and
thus robust to population stratification effects (Spielman
et al. 1993; Fulker et al. 1999; Abecasis et al. 2000a).
Studies based on these tests have become extremely pop-
ular as a result of their robustness and the fact that
collection of matched, healthy controls is not required.
However, parental phenotypes are almost always ig-
nored in these tests, primarily because of the lack of an
analytic framework, whether or not concerns over pop-
ulation stratification (as well as birth-cohort and age-
dependent effects) happen to exist. Family-based tests of
association have also been extended to handle general
pedigrees (Abecasis et al. 20006), although these meth-
ods extract no extra information from the most com-
monly used two-generation family-based designs (e.g.,
designs using affected-offspring trios and nuclear fami-
lies). In this report, we present a suitable analytic frame-
work for the inclusion of parental phenotypes in these
popular designs and describe a series of statistical tests
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that address and assess stratification and age-dependent
etiology. We show that these new tests, which include
parental genotype-phenotype correlation terms, have
significantly more power than the standard family-based
tests that ignore parental phenotype data.

In the scenarios considered in this work, we assume
that phenotypes and genotypes have been measured for
one or more siblings per family; in addition, parental
phenotypes and/or genotypes may have been measured.
The inclusion of parental genotypes alone allows stan-
dard family-based tests of association to be construc-
ted, whereas parental phenotypes (without genotypes)
can be entered as covariates in the offspring pheno-
type model (although this model is less commonly
performed). A full model, described below, considers
parental phenotypes and genotypes jointly, naturally
providing additional information about association that
the partial models do not evaluate. The model is first
introduced in terms of a quantitative trait, for simplicity.
The application to dichotomous traits by use of a lia-
bility-threshold model is then presented, and, finally,
the incorporation of an ascertainment correction is dis-
cussed, making the method applicable to the analysis,
for example, of the popular two-parent-and-affected-
offspring trio design.

Quantitative-Trait Model

The model we use is a variance-components model based
on the between-within-sibship partitioning of Fulker et
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al. (1999). In brief, phenotypic association with geno-
type can be broken into two components: a within com-
ponent, robust to stratification, in which association of
individual phenotype with the difference between indi-
vidual genotype and familial average genotype is ex-
amined within each family, and a befween component,
in which the association of phenotype with the average
familial genotype is examined across all families. Con-
ceptually, this takes advantage of the fact that any two
raw observations (of either genotype or phenotype) can
be uniquely recoded as the difference and the sum of the
two observations and the fact that, genetically, the prop-
erties of the within-family association test are robust to
stratification, as noted and described at length elsewhere
(Fulker et al. 1999; Abecasis et al. 20004a). For example,
the transmission/disequilibrium test (TDT) is the sim-
plest of the within-family tests: the outcome of an af-
fected offspring is compared with the expectation for a
familial-average offspring, given the parental genotypes.
Because of the ascertainment, there is no between-family
component of association with offspring phenotype. A
standard case-control analysis consisting entirely of un-
related individuals is, quite obviously, wholely a be-
tween-family test. Other designs considered below—for
example, a design using nuclear families with multiple
siblings—can have both between- and within-family
components.)

Using this construction, we propose a model for the
complete set of phenotypes in a nuclear family (father,
mother, and # children), given the genotypes of each
individual. Genotypes, G, are coded {1,0, — 1}, corre-
sponding to {AA,Aa,aa}, with subscripts indicating fam-
ily members (F for father; M for mother; and 1, 2,...,
for offspring). We assume a biallelic marker locus (e.g.,
coding for a SNP or for a specific allele of a multial-
lelic marker vs. all other alleles) with additive genetic
effects, although this is not, in principle, a fixed con-
straint of the model; for example, dominance effects
can be included with an additional variable coded
{0,1,0}. If the between-family genotype is denoted
Gy = (G + Gy)/2, the vector of expected phenotypes
for the family (row 1 corresponds to the father, row 2
corresponds to the mother, and the remaining rows cor-
respond to offspring 1 through #) is

u + CGB + d(GE_ GB)

u + G, + d(Gy— Gy
_|m + bGy + w(G, — Gy)
F=\m + bG, + w(G, -Gy’

m + bG, + w(Gy— Gy

where parameters b and w reflect the between- and
within-family components of association for the off-
spring, parameters ¢ and d reflect the corresponding
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effects for parents (“combined” and “difference” ge-
notypic effects), and parameters # and 7 determine the
phenotypic means for parents and offspring, respec-
tively. Therefore, up to four main parameters define the
genotype-phenotype association (the other parameters
are nuisance parameters). By constraining and/or equat-
ing one or more parameters, a number of different like-
lihood-ratio tests can be constructed, as described be-
low. Under the assumption of multivariate normality
for the quantitative phenotypes, the parameters of the
model presented here, under any set of constraints, can
be straightforwardly estimated via maximum likelihood
(although the model presented here could, indeed, be
implemented using different statistical approaches, such
as generalized estimating equations, which might be
more robust in some circumstances—e.g., departures
from multivariate normality in the case of quantitative
phenotypes).

It is important to note that not all families need to
be of the same configuration. For instance, nuclear fam-
ilies without parental phenotypes can still be included
in the analysis, although these families would only con-
tribute to the estimation of the b and w parameters.
Similarly, sibships or individuals without parental ge-
notype or phenotype information can be included, al-
though they would only contribute to b and, in the case
of sibships, w (i.e., not ¢ and d). Phenotypes and ge-
notypes must be observed for both parents for a family
to contribute to parameters ¢ and d. The appendix pro-
vides further details on this procedure.

In the above example, different mean values are spec-
ified for parents and offspring (# vs. m), such that traits
showing birth-cohort or age-related differences in eti-
ology can be appropriately analyzed. Sex-specific dif-
ferences can be similarly handled, and, if neither age
nor sex has any effect on phenotype, a single global
phenotypic mean can be used. Similarly, residual vari-
ances and covariances are allowed to differ between
parents and offspring, as shown in the appendix.

If we assume that the effect of genotype on phenotype
is consistent between parents and offspring, then we can
fit the parameters with the constraints b = ¢ and d =
w. Bear in mind that this assumption requires not that
there be no age-specific difference in phenotype but sim-
ply that the effect of genotype on phenotype not be age-
dependent (a very standard assumption). This assump-
tion can be explicitly tested by comparison of a model
in which all four parameters are freely estimated with
the nested submodel in which the constraints mentioned
above are imposed. For example, depending on the av-
erage age of all offspring, one might expect to see dif-
ferences in both mean and variance for a phenotype,
such as BMI (and possibly also differences in the ef-
fect of the test locus genotypes on the phenotype).
Alternatively, age could be explicitly added as a covar-
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iate (and also as a modifier variable on the effect of
genotype).

If the trait does not show parent-offspring differences
and if there is no population stratification, then it is
appropriate to equate all four association parameters.
The comparison of this model with one in which all
four parameters are fixed to zero (i.e., there is no genetic
association of any kind) provides a powerful 1-df test
of total association.

In the standard between/within model without pa-
rental phenotypes, the parameter w being fixed to zero
provides a test of association that is free from the ef-
fects of population stratification. Analogously, in the
full model, tests based on d will show some degree of
protection against stratification. In particular, to the ex-
tent that stratification is purely a between-family phe-
nomenon and not a within-family phenomenon, d pro-
vides a test that is robust to stratification. That is, the
d parameter will be not robust to population-stratifi-
cation effects only if parents within the same family are
from different strata (and thus the offspring are first-
generation admixed individuals). Although the assump-
tion that all parents share ethnic strata with only their
partner is much less restrictive than the assumption that
they share ethnic strata with all other parents in the
sample, it is still important to remember that this
method provides a compromise between type I and type
IT errors, rather than complete protection against pop-
ulation stratification (and so other approaches to de-
tecting population stratification might still be war-
ranted, such as structured association [Pritchard et al.
2000; Purcell and Sham, in press]). A brief description
of the statistical tests described here and their properties
is provided in table 1.

Another approach to using parental phenotypes is to
include them simply as covariates, whether or not pa-
rental genotypes are also used to construct between and
within genotypic components; this approach is imple-
mented as an option in QTDT software (Abecasis et al.

251

2000a). In this case, the mean vector, describing only
the offspring phenotypes, is

m + fi(B+B,) + bGy + w(G, — Gy)
y=|m + fiPs+ By) + bGy + w(G,— Gy
17'4 + fiPr+ R, + bGy + w(Gy— Gy

where f represents the coefficient for the regression of
offspring phenotype on parental phenotype (alterna-
tively, paternal and/or maternal phenotypes could be
entered separately, if desired). If parental genotypes are
missing, Gy can be estimated from the average sibling
genotype if there is more than one sibling in the fam-
ily (Fulker et al. 1999). The constraint & = w can be
used to form a test of total association (i.e., the formu-
la for sibling i becomes m + f(F: + B,) + aG,, where
a = b = w, and thus the test effectively reduces to a
simple individual-based test, albeit one that appropri-
ately accounts for the relatedness of siblings).

Simulations of Quantitative Traits

We performed a basic simulation study to investigate the
properties of quantitative-trait tests including parental
phenotypes. In the first set of simulations, samples of
100 nuclear families from a homogeneous population
and with either 1 or 2 offspring per family were gen-
erated. A single QTL was simulated to explain either
none or 2.5% of the phenotypic variance, representing
the null and alternative hypotheses, respectively. The
residual covariance between family members was con-
trolled; either all the residual variance was nonshared
between family members (i.e., the QTL effect was the
only factor causing related individuals to show corre-
lated phenotypes), or the residual variance was parti-
tioned into polygenic, shared environmental, or non-
shared environmental effects in a ratio of 1:1:2 (i.e., a
residual correlation of 0.375). In each case, 2,000 rep-
licate samples were generated. Table 2 shows the results

Table 1

Possible Tests Using Between- and Within-Family Components of Association

Test  Alternate Model Null Model Description df
A b, c,w, d bc,cw=d=0 Within-family association, P # O 2
B b, c, w, d b=cw=d Parents and offspring equated 2
C b,c,w=4d bc,cw=d=0 Within-family association, P = O 1
D b,c,w, d b=c=w=4d All parameters equated 3
E b=c=w=d b=c=w=d=0 Total-association 1
F b, w b,w=0 Offspring phenotype within association 1
G b=w b=w=0 Offspring phenotype total association 1

NOTE.—The four parameters modeling between- and within-family components of association
are b and w (for offspring, O) and ¢ and d (for parents, P), respectively. Tests F and G are only
applicable in cases in which parental phenotype data are not jointly modeled as dependent variables.
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Table 2
Simulation Results for the Quantitative-Trait Models
COVARIATES STANDARD
. FuLL MODEL TEST’ TEST® TesT®
SCENARIO AND No. oF
RESIDUAL COVARIANCE? SIBLINGS A B C D E F G F G
No stratification, true QTL effect:
No RC 1 422 .057 .524 .057 .783 197 344 195 346
RC 1 495  .060 .583 .062 .748 239 233 193 345
No RC 2 513 .050 .19  .049 .891 .369 611 368  .619
RC 2 650  .055 .740 .049 .862 464 447 411 598
Stratification B, no QTL effect:
RC 2 .059 .056 .057 .330 .838 .056 245 .060 .833
Stratification B + W, no QTL effect:
RC 2 .808 .208 .804 .189 .961 054 132 .053 .463

NoTE.—Population stratification effects were either absent, purely between family (B), or both between and within family
(B + W). Table 1 gives the details of tests A-G. Tests F and G are presented both with and without parental phenotypes
included as covariates (columns “Covariates Test” and “Standard Test,” respectively).

* RC = residual covariance between family members (e.g., from unobserved polygenes).

® Data are the proportion of replicates significant at a 5% significance level and therefore represent either the empirical
type I error rate (in cases in which the QTL effect was absent) or power (in cases in which the QTL effect was present).

for the first set of simulations. The data refer to the
proportion of replicates significant at a 5% significance
level and therefore represent either the empirical type I
error rate (in cases in which the QTL effect was absent)
or power (in cases in which the QTL effect was present).
In all cases, correct type I error rates were obtained when
there was no stratification effect and no QTL effect, and
hence these results are not shown. Note that the 95%
CI for an estimated proportion of 5% from a sample of
2,000 replicates is ~4%—6%. Similar results were ob-
tained by using more stringent type I error thresholds.
(Note that large sample sizes are required to produce
valid likelihood-ratio test statistics. It is therefore advis-
able to use permutation-based methods to obtain em-
pirical P values when sample size or distributional as-
sumptions are a concern.)

The first four rows of data in table 2 show the power
of the different tests when a QTL effect is present. Con-
sidering the situation in which there is only a single
offspring per family (1st and 2nd rows in table 2), we
see that including parental phenotypes in the full model
test that assumes no population stratification and no
age-dependent effects at the test locus (test E) is by far
the most powerful test, yielding more than twice the
power of the standard total-association test using only
offspring phenotypes and genotypes (standard test G).
All full model association tests (tests A, C, and E) were
more powerful than the standard tests (tests F and G),
whether or not parental phenotypes were included as
covariates in tests F and G. Tests B and D (tests of
whether or not parameters can be equated across par-
ents and offspring, and between and within compo-
nents) all showed type I error rates close to 5%, as
expected in this scenario.

The use of parental phenotypes as covariates only had

an effect when there was some degree of residual co-
variance between parents and offspring. In this case (see
2nd row in table 2), the effect was to marginally increase
the power of the within-family test (test F) and to de-
crease the power of the total-association test (test G).
Similar results were obtained for the case in which each
family has two offspring (3rd and 4th rows in table 2).
Power is gained for the within-family tests when the
residual covariance increases, because the QTL will
effectively explain a greater proportion of the within-
family variation.

Before consideration of the cases in which there is
population stratification (the last two rows in table 2),
it is worth comparing the family-based test E with tests
of unrelated individuals. First, it is important to note
that all of the above-described methods appropriately
account for the relatedness between individuals. That
is, in the case of the parent-offspring trios, for example,
simply treating the 100 families as 300 independent
individuals would be inappropriate. Rerunning the sim-
ulations in this way (i.e., performing simple individual-
based tests) leads to the 5% nominal type I error rate
more than doubling. However, it is of interest to com-
pare test E with an individual-based test for which an
equivalent number of unrelated individuals have been
sampled. That is, how does analyzing 100 trios by use
of the full model compare with analyzing 300 unrelated
individuals by use of a standard approach? Similarly,
how does analyzing 100 nuclear families, each with 2
offspring, compare with analyzing 400 unrelated indi-
viduals? Calculating power analytically, by use of the
Genetic Power Calculator (GPC) (Purcell et al. 2003),
we obtained estimates of 78.7% and 88.9% for samples
of 300 and 400 unrelated individuals, respectively (as-
suming a similar model of 2.5% QTL variance and 5%
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nominal type I error rate). The empirical power es-
timates for test E from the simulations under the as-
sumption of no residual familial covariance were 78.3%
and 89.1%, for 100 families with either 1 or 2 offspring,
respectively. When there is some degree of familial re-
sidual covariance (r = 0.375), then power is attenuated
to a small degree—the estimates decrease to 74.8% and
86.2%, respectively. In other words, analyzing families
in this way does not appear to lead to any significant
reduction in power, compared with analyzing a similar
number of unrelated individuals. One advantage of a
family-based approach is that robust, albeit less pow-
erful, within-family tests are still available. In practi-
cal terms, one might expect the costs for DNA collection
and phenotyping to be less for families that live togeth-
er; on the other hand, the fact that unrelated individu-
als are easier to ascertain for late-onset diseases may
counter this advantage.

The last two rows of data in table 2 represent the
cases in which some simple but severe population strat-
ification effects were introduced. The population was
assumed to consist of two equally frequent strata in
which the QTL trait—increasing allele frequencies were
0.8 and 0.2, respectively. In addition, the first stratum
had a phenotypic mean ~0.5 SDs higher than the second
stratum. Residual variance components were generated
in a ratio of 1:1:2 for polygenic, shared environmental,
and nonshared environmental components. In all sce-
narios with a stratification effect, no true QTL effects
were generated.

Two types of stratification effect were generated. If
stratification was entirely between family (B), then both
parents in a family always belonged to the same stra-
tum—that is, very strong assortative mating on the basis
of ethnicity. In the alternative scenario, stratification
was both a between- and within-family (B + W) phe-
nomenon—that is, no assortative mating for ethnicity—
so the probability of one parent belonging to a stratum
was independent of the second parent’s stratum. Both
scenarios clearly represent idealized extremes; real sam-
ples showing stratification would presumably lie some-
where between these two alternatives (although typ-
ically closer to B than to B + W).

If parents are discordant for strata (i.e., the B + W
condition), then the question arises as to the mean phe-
notype of genotypically admixed individuals. That is,
in terms of the ethnicity-dependent phenotypic effect,
do these children follow their fathers, their mothers, or
some mixture of both? Four alternatives were imple-
mented, although they had no differential impact on the
results and so are not reported separately in table 2. In
brief, the alternatives are (1) offspring effect is the av-
erage of parental strata effects; (2) offspring effect for
all offspring in a family is either the paternal stratum
effect or the maternal stratum effect, with 50:50 prob-
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ability; (3) offspring effect independent for each off-
spring is either the paternal stratum effect or the ma-
ternal stratum effect, with 50:50 probability; and (4)
offspring effect is the maximum value of parental strata
effects.

As expected, none of the total-association tests (i.e.,
tests that assume between- and within-family associa-
tion components to be equal) are robust to either B or
B + W stratification. Also as expected, the within-fam-
ily test that considers only offspring phenotype(s) (test
F) shows appropriate type I error rates. Within-family
association tests that include parental phenotypes (tests
A and C) are robust for B but not for B + W stratifi-
cation. That is, tests based on d will be robust as long
as parents are concordant for their ethnic stratum. The
tests of homogeneity of effect (tests B and D) show some
limited ability to detect such deviations; if these tests
were significant, then one would choose subsequent
association tests with care. They showed low power
(~20%) in these particular cases, however.

The inclusion of parental phenotypes as covariates
provides some degree of protection against stratification
in performing a total-association test on offspring phe-
notypes—when parental phenotypes are included as co-
variates, test G detects spurious association at rates of
25% and 13% for stratification scenarios B and B +
W, respectively. In contrast, when parental phenotypes
are not included as covariates, spurious association is
detected at rates of 83% and 46%. However, the total
test G is less powerful in including parental covariates
when there is a true QTL effect.

In summary, by use of these analytic methods, study
designs that sample nuclear families can provide (1) tests
of power equivalent to that of designs that sample the
same number of unrelated individuals and that also are
equivalent in having no protection against stratification;
(2) powerful within-family tests that show protection
against the between-family component of stratification;
and (3) standard family-based tests that ignore parental
phenotypes, with full protection against stratification.

Qualitative-Trait Model

A natural extension of this model to dichotomous dis-
ease traits can be accomplished by use of a liability-
threshold model. In these models, effects are assumed to
act on an unobserved, underlying, continuous, normal
distribution of liability; affected individuals are assumed
to be above some threshold on the liability scale. For
example, obesity is often defined by a BMI greater than
a specific threshold; in this situation, the underlying con-
tinuous variable (BMI) is easily observed. However, the
liability-threshold model is equally valid for any binary
classification, whether the underlying variable is an ac-
tual measurable quantity or simply a mathematical con-
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struct. The effects of the disease locus are therefore as-
sumed to be additive on the scale of liability; this will
approximately correspond to a multiplicative model for
the effect on the binary outcome (cf. logistic regression,
which models additive effects on the log-odds scale). The
expected population prevalence is given by the area un-
der the curve above the threshold—that is, a function
of the standard cumulative normal distribution function.
For example, a threshold estimated at 1.04 on the Z
score scale of liability would correspond to a 15% pop-
ulation prevalence. The effects of genotype on liability
can then be estimated. In other words, given a model
that specifies the distribution of the liability x, and the
threshold ¢, the likelihood of unaffected and affected
individuals can be calculated using numerical integra-
tions | ®(x,),dx, and [} ®(x,),dx,, respectively, where
® is the standard normal distribution function. For par-
ent-offspring trios, the trivariate normal distribution
gives the likelihood of all possible father, mother, and
offspring phenotype configurations. For example, for an
unaffected father, an affected mother, and a single off-
spring, the likelihood is ["..[; [} ®(x s, xp0%,),dx pdxy, dox,.
If desired, the threshold can be allowed to vary between
fathers, mothers, and/or offspring (e.g., to model differ-
ent prevalences in these different groups).

This approach was tested via some simple proof-of-
principle simulations. In all cases, 100 unselected par-
ent-offspring trios were simulated. Qualitative disease
phenotypes were assigned by dichotomizing a contin-
uous phenotype, with affected and unaffected categories
corresponding to scores above and below the expected
population mean. Either no QTL or a QTL accounting
for 4% of the phenotypic variance of the underlying
continuous liability was generated, with equal allele fre-
quencies. In addition, a residual correlation of either
0.0 or 0.5 was generated. In all cases, the simple 1-df
total-association tests were applied, either by ignoring
parental phenotypes (e.g., testing b = w vs. b = w =
0) or by including them (e.g., testing b = ¢ = w = d
vs.b=c=w=d=0).

With 1,000 replicates, in cases in which no QTL was
simulated, type I error rates were close to 5%. When a
QTL was simulated, the standard approach excluding
parental phenotypes yielded powers of 38% and 40%
for scenarios with residual correlations of 0 and 0.5,
respectively. In contrast, approaches including parental
phenotypes yielded twice the power, giving values of
81% and 79 %, respectively. Analytically, the power for
300 unrelated individuals in this scenario is 79% (by
use of the “case-control for threshold-selected quanti-
tative traits” module of GPC), so we again see that this
approach can capture the power of an unrelated-indi-
vidual design. Of course, given a family sample, the less-
powerful but more-robust within-family analytic op-
tions are still available.

Am. J. Hum. Genet. 76:249-259, 2005
Analysis of Ascertained Samples

The approach described in the previous section is suit-
able for the analysis of unselected families—that is, for
study designs in which there are no constraints on how
many and which family members are affected. The ma-
jority of family-based studies of dichotomous traits,
however, employ some kind of ascertainment procedure;
often, families with at least one affected offspring are
ascertained. Here, we first consider the popular parents-
and-single-affected-offspring trio TDT design, ignoring
parental phenotypes; then, we extend this design to in-
clude parental phenotypes. Sample ascertainment of this
kind invalidates the standard likelihood formulation. To
account for the ascertainment, we use the likelihood
based on the formula

Plx|g)P(g)
> P(x|G)P(G)

where g represents the observed parent-offspring geno-
typic configuration, G represents the set of all 15 pos-
sible parent-offspring genotypic configurations (AA x
AA - AA, AA x Aa— AA, ..., aa X aa — aa), and x
denotes the affected offspring phenotype. It is critical
that the denominator is equal to the probability that a
family has an affected offspring, which (in this specific
case of parents with one offspring) is equal to the pop-
ulation prevalence, P(x) = 3, P(x|G,)P(G,). To estimate
the model parameters, it is necessary to specify the pop-
ulation prevalence and to constrain the denominator to
be equal to it (this parameter is relatively robust to mis-
specification and is generally well known for common
diseases). The parent-offspring genotype probabilities
are simply functions of the population allele frequency
and Mendelian transmission rules (e.g., the probability
of observing AA x Aa— AA is p’q, where p and g are
the allele frequencies, under the assumption of Hardy-
Weinberg equilibrium and random mating).

Extending this to include parental phenotypes, for
cases in which all trio offspring are affected but parents
may or may not be affected, we use a likelihood based
on the formula

P(xF,M,l |g)P(g)
gl P(xIIGi)P(Gi)

3

where x;,,, represents the vector of observed dichot-
omous phenotypes for the family, and x, denotes the
affected offspring phenotype. By use of this framework,
between and within components of association with the
underlying construct of liability can be estimated, as for
the quantitative variable case. In particular, we consider
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Qualitative-trait simulations. A, Proportion of trios with at least one affected parent, with varying polygenic variance. B, Ao,

with varying polygenic variance. C, Proportion of trios with at least one affected parent, with varying familial variance. D, N\, with varying
familial variance. Within each plot, the results are stratified by frequency of disease (1%, 5%, 10%, and 20%).

three tests: FAM,, a 1-df association test of ¢ = w =
d versus ¢ = w = d = 0; FAMy, a 1-df within-family
association test of c = 0, w = d versusc = w = d =
0; and TDTy, a 1-df within-family association test that
is asymptotically equivalent to the standard TDT, w
versus w = 0. In this design, there is no power to es-
timate b, since there is no variation in offspring phe-
notype between families. In summary, FAM,, a test of
total association, is the most powerful but least robust
to stratification; TDTy, is the least powerful but the most
robust; and FAMy, is expected to represent a compro-
mise in terms of power and robustness (as before, robust
to stratification except if parents in the same family are
stratified).

Simulations of Trios

To simulate the ascertained trio samples, unselected trio
samples were first generated with a quantitative-trait
score (representing liability). Either no QTL or a QTL
accounting for ~2% of the phenotypic variance of the
continuous liability was generated, with equal allele fre-
quencies. For both parents and offspring, a quantitative-
trait threshold for affected status was set to give disease
frequencies of 1%, 5%, 10%, or 20% (i.e., thresholds
of 2.32635, 1.64485, 1.281551, or 0.841621 SDs above
the mean). Trios with an unaffected offspring were ex-
cluded from subsequent analysis—the initial unselected
number of trios was 10,000; 2,000; 1,000; or 500—to

ensure that each simulated sample consisted of, on av-
erage, 100 ascertained trios, irrespective of disease fre-
quency. The ascertained trio samples were then analyzed
using the three qualitative trait models mentioned above:
FAM., FAMy,, and TDTj.

The residual variance was partitioned in one of two
ways—in addition to a certain degree of nonshared var-
iance (i.e., effects unique to each member of the trio),
a shared component was generated that was either fa-
milial (shared between all three trio members) or poly-
genic (partially shared between a parent and offspring
but not shared between parents). In each of the two sets
of simulations, labeled “familial” and “polygenic,” the
proportion of shared to nonshared variance was in-
creased from 0% to 90%, in intervals of 10%. That is,
a familial residual variance of 50% implies a residual
correlation of 0.50 between parents and between par-
ents and offspring; in contrast, a polygenic residual
variance of 50% implies a parent-offspring correlation
of 0.25 and no spousal correlation. Of course, familial
and polygenic influences are not, in practice, mutually
exclusive.

The utility of any method that incorporates qualita-
tive parental phenotypes will clearly depend, to a large
extent, on the presence of affected parents. Figure 1
shows the proportion of trios with at least one affected
parent among the samples of trios ascertained for hav-
ing an affected offspring. Also shown are the corre-
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Figure 2
(X-axes) for the four disease frequencies (1%, 5%, 10%, and 20%).

sponding values of N\, the relative risk for parents of
developing disease, given an affected offspring. In most
cases, a reasonable proportion (~20%) of trios contain
at least one affected parent. If the disease frequency and
the parent-offspring correlation are both low, then far
fewer trios have at least one affected parent—one might
expect the new methods to show little or no advantage
in these scenarios. Of course, in the polygenic scenarios,
the parent-offspring correlation will be lower for the
same proportion of variance explained, as compared
with the familial scenarios.

For simulations with no genetic effect, all methods
show appropriate 5% type I error rates. For the cases
in which a true genetic effect was simulated, the results
for the standard TDT analysis will be first reported;
these were not affected by the nature or degree of re-
sidual shared variance. The power of the TDT increases
with decreasing disease frequency. This result is ex-
pected, since the gene acts as a QTL on the liability
scale, and so a less frequent disease implicitly represents
a higher threshold and therefore defines a more extreme
group. The analytic power estimates for the standard
TDT analysis are given by GPC (by use of the “TDT
for threshold-selected quantitative traits” module) as
~29%, 42%, 54%, and 75% for disease frequencies of
20%, 10%, 5%, and 1%, respectively (for the TDTy,
test, the simulations also yielded average power esti-
mates of 29%, 42%, 54%, and 75%, respectively).

With regard to the FAM,. and FAMy; tests, the results
depend on the nature and degree of residual shared var-
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Qualitative-trait simulations. Power for the three tests (FAM;, FAMy, and TDTy,) are plotted against residual polygenic variance

iance. In the polygenic scenarios, there is no strong trend
toward greater power at higher levels of polygenic re-
sidual variance (results plotted in fig. 2). In contrast,
the familial scenarios show a greater influence of the
degree of residual shared variance, especially for rare
diseases (results plotted in fig. 3).

It should be noted that the differences between figures
2 and 3 arise because of the higher average correlation
between relatives in the familial, as opposed to poly-
genic, scenario, rather than because of the specific na-
ture of that variation, per se (e.g., variation due to en-
vironmental factors as opposed to polygenes). This is
simply because familial variance is completely shared
among all three members of a trio, whereas polygenic
variance is only 50% shared between parents and off-
spring and does not lead to any correlation between
parents.

For the polygenic case, the new methods give a no-
ticeable increase in power for common diseases. The
effect is much less noticeable for rarer diseases (this is
also apparent in terms of the average likelihood-ratio
test statistic, and not just the power, which is approach-
ing 100%, in any case).

For the familial cases, both FAM and FAM,, increase
in power with increasing residual shared variance. This
is analogous to the increase in power of the Fulker
model within-family test with increasing residual sibling
correlation (Sham et al. 2000). As expected, if the dis-
ease frequency and the residual correlation are both low,
then FAM; and FAM,, do not show any advantage rel-
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Figure 3
(X-axes) for the four disease frequencies (1%, 5%, 10%, and 20%).

ative to TDTy,. In these scenarios, we would not ad-
vocate the use of the parental phenotype models. In all
other cases, however, the parental phenotype models
show considerable gains in power. Since many complex
human diseases are relatively common, show moderate-
to-strong familial clustering, and are multifactorial (i.e.,
single loci will have small individual effects, and thus
residual correlations are likely to be moderate to high),
we can expect that the inclusion of parental phenotypes
will often lead to an increase in power. Since disease
frequency, parent-offspring, and parent-parent corre-
lation in liability are likely to be known prior to starting
any molecular genetic study, the question of whether
parental phenotypes should or should not be collected
can be decided in advance.

With respect to population stratification, the FAM,,
and FAM,, tests show similar profiles to quantitative-
trait tests E and C, respectively. That is, the FAM,, ap-
proach is robust to the between-family component of
stratification, and the FAM; is similar to a case-control
design using unrelated individuals and so is not robust
to any population-stratification effects. The present sim-
ulation results would suggest that, for ascertained trios,
most of the power comes from the within-family com-
ponent of association, and thus little would be lost in
using the more robust FAMy, over FAM,, in most cir-
cumstances. Of course, between-family stratification
will act to increase the familial component of shared
variance: this will increase the power of the FAMy; test,
which is still robust to between family stratification (i.e.,
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if allele frequency at the test locus also differs between
strata).

Ascertaining Affected Parents

Whittaker and Lewis (1998) note that the power of the
TDT might, in some circumstances, be improved by as-
certainment by parental, as well as offspring, disease
status. In particular, they suggest that ascertaining trios
in which one parent is affected is often a practical way
to increase power. We might also expect the new tests
presented here that use parental phenotype information,
to benefit from ascertainment of affected parents. In par-
ticular, the FAMy, test should perform particularly well
when all trios have at least one affected parent (most
trios will have only one affected parent, unless the dis-
ease is extremely common). To illustrate this point, we
took a disease model used by Whittaker and Lewis
(1998, multiplicative model 8 in table 2) that assumes
a disease with 10% prevalence and a risk-allele fre-
quency of 12.5% , with a genotypic relative risk of 2.9
(a relatively large effect). In all cases, we fix the sample
size at 100 trios, and we use a type I error rate of
5 x 107 to investigate power. The likelihood used in
the FAM,, test has to be modified to account for the
ascertainment by parental phenotype:

Plxppa|8)P(8)
5 5
_;1 P(x,,x,|G;)P(G))
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where x, denotes the affected offspring phenotype, and
x, denotes the affected parental phenotype (this revised
test is hereafter denoted “FAMy,*”). All tests show ap-
propriate type I error rates under the null hypothesis of
no association in these conditions (for nominal rates of
both 5% and 1%). When the disease-gene effect is sim-
ulated, we obtain estimates of power, as shown in table
3. Several interesting features emerge. First, by use of
the standard TDT, the ascertainment of affected parents
increases power only in some circumstances. If there is
a high residual familial correlation (the r = 0.6 sce-
nario), then the ascertainment of trios with affected par-
ents actually decreases power (from 36% to 17%). This
seems intuitive: if family-wide environmental factors and
polygenic factors other than the test locus account for
the majority of within-family resemblance, then the cases
of families with multiple affected members are more
likely to be the result of causes other than the test locus
(the influence of residual correlation was not explored
by Whittaker and Lewis [1998]). Second, if the residual
correlation is low, then ascertainment by parental disease
status can increase power to some extent (from ~30%
to near 50%). Third, the use of the FAMy* approach
is more powerful, whether or not we ascertain by pa-
rental disease status. However, the most dramatic in-
crease in power comes from the use of the FAM,* test
when we ascertain by parental disease status; power is
99% in all cases. This dramatic increase is not surprising
when considered in light of figure 1—that is, since 100%
of families now have at least one affected parent, the
majority of families will contribute to the estimation of
the d parameter.

Summary

The incorporation of parental phenotypes can dramat-
ically increase power, compared with the power of fam-
ily-based tests that only use parental genotypes. We have
presented a set of models for nuclear-family data that
provide new tests offering similar efficiency to that of
unrelated-individual designs, as well as a novel set of
tests that offer a compromise in terms of efficiency and
robustness—namely, tests that are robust only to the
between-family component of stratification (see authors’
Web site for information on scripts implementing the
above-mentioned methods by use of the model-fitting
package Mx). Naturally, standard within-family ap-
proaches can still be conducted within this framework
if nuclear families have been sampled. In addition, there
is some limited ability to detect departures from model
assumptions, such as testing for stratification. The ability
to strengthen or relax assumptions with regard to strat-
ification, after the data have been collected, is a desirable
feature, especially given the advent of other methods to
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Table 3

Simulations Investigating the Impact on Power of the
Ascertainment of Trios with an Affected Parent and an Affected
Offspring

RESULT FOR RESIDUAL

TEST AND
FAMILIAL CORRELATION LEVEL

STATUS OF ASCERTAINMENT
OF AFFECTED PARENTS .0 1 .6
TDTy:

Without ascertainment .33 .35 .36

With ascertainment 49 49 17
FAM:

Without ascertainment 46 .55 .60
FAM,*:

With ascertainment .99 .99 .99

NoOTE.—The disease model follows multiplicative model 8 of Whit-
taker and Lewis (1998, table 2). In all cases, 100 trios are used, and
the ascertainment is for either only the offspring being affected or at
least one parent being affected in addition to offspring. Note that the
FAM,,* test is conditional on ascertaining an affected parent, as de-
scribed in the text. Correct type I error rates are obtained for all tests
under all scenarios when no genetic effect is simulated.

detect stratification, such as those used by Pritchard et
al. (2000).

This method can be easily extended to analyze mul-
tiallelic loci or phase-known haplotypes instead of bial-
lelic genotypes, such that each allele and/or haplotype
is analyzed one at a time versus all others. Alternatively,
this approach can be incorporated into any framework
that uses the basic between-within partitioning, to pro-
vide (for example) omnibus tests for multiallelic loci
or haplotypes. Extension to phase-ambiguous haplotype
analysis is also possible, although it will involve more
work.

The more powerful tests of association proposed here
have practical applications. Many studies involving
trio collections have been completed, and, in some
cases, it may be appropriate to reevaluate those studies
with a more powerful test statistic. Furthermore, very
large collections appropriate for family-based associa-
tion tests are in the process of being collected for large-
scale (and, perhaps soon, whole-genome) association
studies. In some cases, there are genuine concerns about
robustness, but, in many cases (such as in the study of
common childhood diseases), families are collected sim-
ply because of convenience. If parents are recruited into
studies for genotyping in the standard family-based ap-
proach, and if the cost of phenotyping is not prohibi-
tively expensive, then these results suggest that to not
collect and phenotype parents is often to miss an op-
portunity for considerable increases in power.
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Appendix

For quantitative traits, a variance-components model
under the assumption of multivariate normality de-
scribes the phenotypes in nuclear families, as discussed
by Fulker et al. (1999) and Abecasis et al. (2000a). The
vector of phenotypes, p ~ N(u,E), has expected values
(as described in the main text) and a covariance matrix
modeled by five unique parameters, distinguishing par-
ent and offspring residual variances and covariances:

Ve
G W
c—|Co Go Vo
Cro Coo Co Vo ’
CPO Cpo Co Co = Vo

where V, is the residual variance of the parental phe-
notypes, V, is the residual variance of offspring phe-
notypes, C, is the residual spousal covariance, C, is the
residual sibling covariance, and C,, is the residual par-
ent-offspring covariance. If there are multiple siblings in
the family and identity-by-descent information is avail-
able, then this can be incorporated to model linkage and
association simultaneously, which is directly analogous
to the approach of Fulker et al. (1999) and that of QTDT
software.

When parental phenotypes are entered as covariates,
then the covariance matrix is simply

Vi

£=|C

CO CO VO

o

Vo

The same basic model is applied in analyzing dichoto-
mous variables, within the context of a liability-thresh-
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old model. This model then applies to the continuous
latent liability distribution.

Electronic-Database Information

The URLs for data presented herein are as follows:

Authors’ Web site, http://www.broad.mit.edu/"shaun/parents/
(for scripts that implement the methods discussed above by
use of the model-fitting package Mx)

Genetic Power Calculator (GPC), http://statgen.iop.kcl.ac.uk/

gpc/
Mx, http://www.vcu.edu/mx/
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